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Energetic Particle Sources

Typical fusion plasmas have density ny,~ 102°m=and T,,~10kev
Typical energetic particle energy E,~100kev >> Ty, .

In current tokamak devices, energetic particles are usually
introduced by neutral beam injection (NBI heating) or by Radio
Frequency wave heating (RF heating).

In a fusion reactor, energetic alpha particles are produced by
fusion reactions:

D+T =2 o(3.5Mev) + n (14Mev)

=

Energetic particles =it & ¥i1, fast particles/hot particles RFi-F,
beam ions K&+



Energetic particle physics is one of key
research areas in fusion plasmas

Fusion plasma research topics:

Equilibrium

MHD stability

Transport

Heating and current drive
Edge physics

Plasma wall interaction

Energetic Particle Physics (effects on equilibrium, MHD
stability, Alfven Eigenmodes (AE), transport etc)



Roles of energetic particles in fusion plasmas

« Heat plasmas via Coulomb collisions, current drive
* Influence MHD stability

« Destabilize Alfven waves via wave-particle resonances
( Alfven eigenmodes and Energetic Particle Mode)

« Energetic particle redistribution/losses due to 3D
perturbations can degrade plasma heating, and
damage reactor wall (e.g., ripple, MHD modes etc)

* Energetic particles can affect thermal plasmas via their
effects on equilibrium, stability and transport



Single Particle Confinement

*Constants of motion: energy, magnetic moment and toroidal angular
momentum.

*For an axi-symmetric torus, particles are confined as long as orbit
width is not too large. (conservation of toroidal angular momentum.)

*Toroidal field ripple (due to discrete coils) or other external 3D
perturbations (e.g., RMP) can induce anomalous transport of
energetic particles.

*Symmetry-breaking MHD modes (sawtooth, NTM etc) can also
cause energetic particle anomalous transport.



Shear Alfven spectrum and continuum damping

« Shear Alfven wave dispersion relation

1 m , B
(n—-——)
R q(r) p(r)

_ W =kV =
« Continuum spectrum ”

* Driven perturbation at o is resonantly absorbed at
0= (r) - continuum damping



Continuum spectrum, gaps, Alfven eigenmodes
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Coupling of m and m+k modes breaks
degeneracy of Alfven continuum :

k=1 coupling by toroidicity
k=2 coupling by elongation
k=3 coupling triangularity.



Discrete Alfven Eigenmodes versus
Energetic Particle Modes

« Discrete Alfven Eigenmodes (AE):
Mode frequencies located outside Alfven continuum
(e.g., inside gaps);
Modes exist in the MHD Ilimit;
energetic particle effects are often perturbative.

« Energetic Particle Modes (EPM):

Mode frequencies located inside Alfven continuum
and determined by energetic particle dynamics;

Energetic effects are non-perturbative;

Requires sufficient energetic particle drive to
overcome continuum damping.



Example of Discrete AE:
Toroidal Alfven Eigenmode (TAE)

TAE mode frequencies are located inside the toroidcity-induced Alfven gaps;
TAE modes peak at the gaps with two dominating poloidal harmonics.
C.Z. Cheng, L. Chen and M.S. Chance 1985, Ann. Phys. (N.Y.) 161, 21
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Destabilize shear Alfven waves via wave-particle resonance

» Destabilization mechanism (universal drive)

Wave particle resonance at = k”v||

Particles lose/gain energy going outward/inward. As a
result, particles lose energy to waves due to density
gradient (free energy!)

af, __ndE
dt o dt
Energetic particle drive nEdf Ed
o2 B4 AT,

Spatial gradient drive Landat.é;mping 11
Due to velocity space gradient
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Example of EPM: fishbone instability

Mode structure is of (m,n)=(1,1) internal kink;
Mode is induced by energetic trapped particles;

Mode frequency is comparable to trapped
particles’ precessional drift frequency.

Mode frequency is inside Alfven continuum.

K. McGuire, R. Goldston, M. Bell, et al. 1983, Phys. Rev. Lett. 50, 891
L. Chen, R.B. White and M.N. Rosenbluth 1984, Phys. Rev. Lett. 52, 1122
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Kinetic/MHD Hybrid Model

dv

CGL form:
p—=-VP-V.P,+JXB P, = P.1+ (P — P.)bb

Guiding center distribution:

B
J=VXB, —=-VXE

It F=FX v,p) = Z O(X — X))o (v — vy:)0(pt — p14)
E+vXB=175] Gyrokinetic or drift kinetic equations:
dX 1 1 I
dp \ o= @[‘FHB* —bg x ((E) = =V (Bo + (05)))]
o +V . (pv)=0 t €
C dv > 1 L
] md—.t“ = ?B“” -[(E) — EJL.-!-V(BU + (0B))]
Nl |
(‘f_jt =WV VAPV " VE muv
' P B*=B,+(5B)+ —V Xb, B*=B* b,

q

G. Y. Fu, et al., Phys. Plasmas 13, 052517 (2006).
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Quadratic form

2= - 98K — VR + &5xB + FusE

W a3
ot T TWE

G.Y. Fu et al. Phys. Fluids B5, 4040 (1993)
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Drift-kinetic Equation for Energetic Particle Response

St :JGBUMU[]Q 5]C
:J&ugwjgf
o= - 3:9f, + ¢
(S’E £ U b T @V) % = QLEDJC" (W- M,Qq

Ox = n 23
were * A DPCP ?,ﬁ‘._ %:el-{"f—mu‘goﬁ
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Quadratic form

DWW = SrB Z d¢ ded\ €2 Jq‘(w Wk | 7, ‘G’Pll o
M ’ Fu)@'—nu)cp—@

where G = @(LL@)@NW?JCWQ
q>d7 = u)cy’t +CPCC> (V&YJO'C(Q ngt't)

. A —((PWel +n
Ge = %;j Gto) e Tt TNPE) 4

G is He period of packcle orbit

G.Y. Fu et al. Phys. Fluids B5, 4040 (1993)
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EP interaction with internal kink mode

Stabilization of internal kink by trapped energetic particles;
Excitation of fishbone by trapped energetic particles;
Excitation of fishbone by passing particles

Hybrid simulations of energetic particle interaction with
internal kink mode
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Stabilization of internal kink by trapped energetic particles

Fov {’ro\ppecQ ?cut'cjw a/nd A =0

Wp = — s i {F’ w_w’K)
su = — 51 deCd/\E o | G
where  wd = —nwg @,O 2 <é)

‘EOY WK (/Ud : N K UJJ((

o-wx W
00— 0 — —4 > 0 ’;—> SU\Jk >0

= sfabi[izing/J
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Experimental observation of fishbone instability in PDX

Vorume 50, NUMBER 12 PHYSICAL REVIEW LETTERS 21 MARcH 1983
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FIG. 1. The time evolution of the soft—x-ray emission along a central chord, the 8 signal from a coil near the
outer wall of the vacuum vessel, and the fast neutron flux. Expansion of the data near two “fishbones” is also shown,

K. McGuire, R. Goldston, M. Bell, etal. 1983, Phys. Rev.

Lett. 50, 891
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Brief history of fishbone

1983: discovery of beam-driven fishbone in PDX (McGuire PRL 1983);

1984: theory of fishbone driven by energetic trapped particle via precessional
resonance, (Chen PRL 1984);

— O~ Oy
1986: theory of fishbone driven by energetic trapped particles (Coppi PRL 1986);
— W~ O,
1986: discovery of fishbone driven by passing beam ions in PBX (Heidbrink PRL 1986);
1993: theory of fishbone driven by passing energetic ions (Betti PRL 1993);
— W~ O,
2001: theory of fishbone driven by passing energetic ions (Wang PRL 2001)
— ®~
2019: theory of low-frequency fishbone driven by passing energetic ions (Yu NF 2019)
— ®~O,— O
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Theory of Fishbone Instabilities
W = Nwg + Ppwy

Trapped particle |Passing particle

EPM p=0, gy PO W= W,

L. Chen PRL 1984 High frequency,
S.J. Wang, PRL 2001.

(D*i p=0; . p=—1)
Mode W= Wy W= Wy = Wy — Wy

B. Coppi, PRL, 1986 R. Betti PRL 1993
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Fishbone dispersion relation (trapped particles)
—iw/d +OIW,+8W,=0.

B‘.l 00 —_ —_—
SW, = ~29f27r3m,,fRBr drf 1 daL dE ESK,J* O J:

max W = Wgp

— i Q (@ g/ @4) + W+ (Bh, o) QIn(1-1/Q) =0

L. Chen, R.B. White and M.N. Rosenbluth 1984, Phys. Rev. Lett. 52, 1122
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Fishbone dispersion relation (trapped particles)

— i Q@G 4) + W+ (Bpedo) QIn(1-1/0) =0

Q-2
N W dm
ConS!‘dQ)\/ 5% =
. . % W
At ma@'“‘*\ S’)’a[alll% <[ith) = Y('a;
= ’é‘ gr IME ;LE,—U&M

_-;7 3YO\NH/\ W\TK’L b/ o /&J—A%C<(3")ti)_<&ti>cn‘t)



Simulation of Fishbone Instability

G.Y. Fu et al., Phys. Plasmas, 2006
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Model used in M3D-K

Av CGL form:
pE:—VP—V‘Ph‘FJXB Ph:PJ_:[«I—(jD“—PJ_)bb
B Guiding center distribution:
=VXB, —=-VXE i - - \
y ot F=F(X v 1) =Y 0(X = X)d(v) — vp,:)0(s — prs)
E+vXB=17] Gyrokinetic or drift kinetic equations:
dX 1 1
3 \ — = — |y B" —bg x ({(E) — —uV(By + (0B)))
LV (pv) =0 ar = e T e (B VT OB
G : -
mM = %B“” -[(E) — i,uV(BU + (0B))]
dp dt B e

- = —vpV - v 4+ pV - e VE muv
_ p B*=B,+(sB)+—V X b, B*=B*-h,
q

G. Y. Fu, et al., Phys. Plasmas 13, 052517 (2006).
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Excitation of Fishbone at high p,,
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Mode Structure: Ideal Kink v.s. Fishbone
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Nonlinear evolution of mode structure and mode amplitude
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Simulation of fishbone shows distribution fattening

distributiqn‘@"'”“

and strong frequency chirping
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Simulation of fishbone driven by
trapped beam ions in EAST plasmas

W. Shen, Nuclear Fusion 2017
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Beam-driven fishbone in EAST experiment

0.05

In 2014, the fishbone instability was observed in EAST experiment with NBI heating for the

first time, and it was diagnosed by a solid-state neutral particle analyzer together with a soft X-

ray system[1]. In this work, the global kinetic-MHD hybrid code M3D-K]2,3] is applied to

study the fishbone instability in the EAST experiment.

-0.05

(a) ssNPA@ OOnm |

R ELLRR/LELY IR R 22

0
0.5

05HD)  Core SX

C 1 |||||||||‘i

Frequency (kHz)

14 Iffb ~ (1.75-5.75) + 1.25 kHz
ArXVII,q—%

12 f&ore SX 48605

4.76

47605  4.761

4.7615 4.762 4.7625 467 4.68 4.69 4.7 4.71 4.72
time/s

[1] Xu L.Q. et al 2016 Phys. Plasmas 22 122510
[2] Park W. et al 1999 Phys. Plasmas 6 1796
[3] Fu G.Y. et al 2006 Phys. Plasmas 13 052517
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Basic parameters and initial profiles

Main parameters in EAST Shot #48605:
major radius: Ry=1.86 m

minor radius: a=0.44 m

elongation: k=1.60

triangularity: 6=0.43

toroidal magnetic field: By=1.75T

central density: ny=5.28x10!° m-3 1
central total plasma beta: By, 0=3.45% 0.8}
central beam ion beta: B, c=0.86% S06[
=04}
Beam ion distribution function: 0.2l
S H(w R 0 : : ' '
f= @ o fg ) eap(—(A — Ro)2/AN)cap(— (¥) /AD) 10 e e o8 1
- 0.8}
A = uBy/E Ay = 0.8, AA = 0.5, A¥ = 0.3,
=06
«  The injection energy of NBI is E, = 60 keV. Also = 94
0.2}
NBI of E¢/2 and E/3 are included. 0 . | | .
0 0.2 0.4 0.6 0.8 1



Linear results with different beam pressures
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Simulation results agree well with experiment with
respect to frequency and mode structure

* Ppogo/Piotaro 18 around 0.25 according to EAST experiment
measurements The corresponding simulated mode
frequency 1s f; , = (0.022 ®,)/(2w) = 6.99 kHz. This is
consistent with the experiment measured mode frequency of
fexp = 5~7 kHz

x 10 t=4.6615,48605 EAST

3l
.......................................................... SX
: : 6 0.6 . . . - md
06 ........ ............ ......
4 0.4 2
0.4.. ...... 2
0.2} 12 0.2¢ 1
£ of " 10 E 0 Q i°
N N
0.2 . W -0.2} 1 @
0.4 3 B
04+ ...... 4 04} ]
-3
0.6} G AAAAAAAAAAAA AAAAAA 1
DRI R < 4
14 16 18 2 22 14 16 18 2 22
R/m R/m
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Nonlinear simulation shows frequency chirping and

excitation of higher frequency mode

The mode amplitude first
grows and then saturates
fromt =~ 1500 t,.

The mode frequency chirps
up and down with the
downward branch dominant.

A new high frequency mode
with ® =~ 0.166 ®, emerges
att =~ 3000 t, an(f persists
around 2000 t,.

The new high frequency
mode was not observed in the
EAST experiment, because
the maximum mode
frequency which can be
measured in the experiment
is around 0.117 w4
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(b) Time (T4)
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Nonlinear simulation shows frequency jumping

In early nonlinear phase,
the low frequency mode
with ® =~ 0.0314 ®, is
dominant until t = 1200
TA-

In later nonlinear phase
1200 15 <t <2500 14,
the high frequency o =
0.157 o, becomes
dominant.

Finally the mode transits

to the low frequency
mode with ® = 0.0157

m, after t = 2500 t4.

(a) -3

500

0.05 ”: 3
»
0

500

1000
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Time (Ta)
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3000
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M3D-K simulations of sawteeth and energetic particle transport

W. Shen, G.Y. Fu, Z.M. Sheng, PoP 2014

* Sawteeth oscillations are periodic, internal magnetic reconnection events which
occur in tokamak plasmas. They are mainly caused by internal kink mode with
dominant toroidal and poloidal mode numbers n=m=1. Sawteeth can induce
large energetic particle transport.

* Previous theoretical work

Kolesnichenko 1996: The E x B drift drives the redistribution whereas the precession
weakens it when o4t > 27 (E > E_1);

Zhao and While 1997: ORBIT simulation based on model evolution of sawtooth crash.
Important role of the stochasticity of magnetic field lines;

 This work: test particle model with sawtooth crash simulated self-consistently
using full resistive MHD model
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M3D-K Simulations of Sawteeth and Energetic Particle Transport:
Trapped particle at E=E_,,./4
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Sawtooth movie: Poincare plot and fast trapped ion distribution
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Energetic Particle Transport due to a sawtooth crash: strong
energy dependence for trapped and counter-passing particles

0.25
0.2¢ D
o
=
<
L—ﬂ 0-15 o Vo e co — pass%ng
“-..‘__H wv
_g S —B-— counter — passing
E 0.1 —O—trapped
-
0.05+ ]
1
66606060069
0
0 1 2 3 4

E=E; at o,T =27
I|f(r) _f(r:g'?ﬂf‘d )‘dﬂ crit d ‘crash

f|c3”|dfi fffdﬂ = Ifﬁ:g?ﬂﬁ)dﬂ NA=pB, /E

passing particles with A=0;
trapped particles with A=1.0
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Summary :M3D-K Simulations of Sawteeth and
Energetic Particle Transport

MHD simulations show repeated sawtooth cycles due to a resistive (1,1)
internal kink mode for a model tokamak equilibrium.

Test particle simulations are carried out to study the energetic particle
transport due to a sawtooth crash.

For trapped particles, the redistribution occurs for particle energy below a
critical value in agreement with previous theory.

For co-passing particles, the redistribution is strong with little dependence on
particle energy. In contrast, the redistribution level of counter-passing particles
decreases as particle energy becomes large.
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Energetic particle transport due to kink mode and Fishbone
in NSTX (F. Wang et al, PoP 2013)

* We consider NSTX plasmas with a weakly reversed g profile and
g_min close but above unity.

* Forsuch q profile, fishbone and non-resonant kink mode (NRK)
have been observed in NSTX and MAST.

* Experiment results showed that kink mode and fishbone can
drive large beam ion redistribution (NSTX and MAST)
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Equilibrium profile and parameters :

NSTX #124379 at t=0.635s

0.6
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f ~ 0.3
dmin~1.03 - 1.2
R, = 0.858m
a=0.602m
B, = 0.44T

no = 9.3 X 1019m =3

n(T) =no(T/Tp)~3/?
o =5x107°
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XL =5x%x10"°
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Beam-driven fishbones and non-resonant kink
modes (LLM) are observed in NSTX and MAST

E. Fredrickson
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The fishbone mode structure shows twisting feature

fishbone
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Stability diagram: stabilization of ideal kink
and excitation of fishbone at higher g_min
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Steady state saturation of NRK with beam ions
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Energetic particles have weak effects on
the NRK mode nonlinear saturation level
(including the n=1 kinetic energy and the
2/1 island width) .
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NRK drives significant redistribution of passing particles
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Kinetic Energy (arb. units)
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Fishbone nonlinear evolution
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Theory of low-frequency fishbone driven
by passing beam ions in HL-2A plasmas

Recent HL-2A Results show a low frequency fishbone is
excited by passing beam ions;

Motivated by HL-2A results, a fishbone dispersion relation
Is derived, solved, and applied to the HL-2A experiment.

L.M. Yu, Nuclear Fusion 2019
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Recent HL-2A Results show a low frequency
fishbone is excited by beam ions

HL-2A,22485

R
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in plasma frame, the initial frequency o fishbone: f(fishbone)~10kHZ
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Fishbone dispersion relation

LW o -
[ — +6Wf+5Wk=O

w,

1 o ¥
oW, =Efd3x§ VP,

1
SP = | dv=MV
k1l f 2 J_g
6qu=fd3m1vnzg

g . the non-adiabatic distribution function of hot ions
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Drift kinetic equation of g with FOW

for m=1,n=1 fishbone

(6 +V, V+va)g IS—(D u))G

G(r.0,A)= [A/b+2(1—A/b)

= [E (r 9)Vr+§ (r O)Ve]exp

e s

-o1)

g, (r@) g H(r pcosH xp(—i@)

= FOW

E, (rE)) —irk H(r pdcose)exp( )



The formula of oW,

\Y"\Z

6V|{(=f%cb(d/\s ds—'c (00 ® )2

P e P0)

The slowing-down distribution function for beam
ions is considered.

For low-frequency fishbone, the p=0 and p=-1 terms
of 8W, are included.

? Mo, + [0, -
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Fishbone dispersion relation is derived

() 2
: : § () = —*= o =wR/v
Slr—l gdsTs Ab. / h
04 _M/(ﬁ ) @4 = va/3Y2Ro5
[ 2F (Q)
1 l A - ( )
SW = 6Wr + SmedByn + 57e (—b) Bons | A —

I

toroidal anisotropic finite orbit width asymmetric resonance

Graves PRL 2004
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) %2 15
e =sx - (1) (22 )

,- 20 [T (7" d(P)
f‘jps = _ng% > dr Z dr

(P)= (Ph>+Pc

Ph — Ph” _";Ph_L
1 2w
(P) ZE/O doP
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Effects of Finite Orbit Width

* Responsible for P=-1 resonance

 Stabilizing for co-passing ions due to good
curvature

N

g=1 flux surface Co-passing orbit
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Re(F)

0.61

0.2

1

k]

: 1 A | _
(5!) = —<{ —8Q2 [tan” —= + tanh 1 —
n NGS) VO

() +1
+-(1-_:ﬁ33)1u ( L
() — 1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

1

+ 10

Betti PPCF 1993
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For Q) =, +iQ; and Q; < Q,

Q. 1
4

ﬂ\b

., yields
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HL-2A Discharge 22485, t=600~650 parameters

Bt =1.34T

Ne=1.31e13 /cm”3 (Deuterium plasma)
Ti=1750Ev

Te=810Ev

Beta=0.78%

RO=1.65

V_a=5.7070e6 m/s

V_0=1.425e6 m/s

f 0=142KHz

T(se) slowing down time ~50ms

Global energy confinement time ~50ms

NBI injection 41~40KeV
Pitch angle ~0.28
Passing >90%
q=q0+2(r/a)?

NBI ‘}i}\Li 3
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Solutions of dispersion near critical shear

s=0.28 s=0.30 s=0.32

0.6 A

0.5 1

0.3 q

0.2 q
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0 L L L L L L L L L L L L L L
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Ph By, B

T T T T T T
0.1 1 0.1 1 0.1f
0.05 1 0.05 1 0.05
i . . i o7 o . f R ] — R —
-0.05 1 -0.05 1 -0.05
“01f 1 -0.1 1 -0.1F
-0.15 ! . . : L L L -0.15 . + ; L ; : ; -0.15 - . ; x : L
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04



Critical shear for existence of the lower frequency branch
with corresponding lower fast ion beta threshold

- ReF (Q)
=1 Boh + =TE1— Bprs |A —
Hph 3 1 = ph B

The condition for critical shear is approximately
determined by the sign of the last term.

Scrit = 2(Re(F))max/TCA
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Results for beam-driven fishbone in HL-2A

* q=q0 + 2(r/a)?

* There exists a critical threshold in magnetic shear,
St~ 0.3 below which beta threshold of fast beam
ion for fishbone excitation is very low, [y, . <
0.5%;

 Above the critical shear, the beta threshold is
much higher, on order of 3.0%;

* Mode frequency is similar to observed value ~
10kHz.
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Summary

Motivated by HL-2A results of beam-driven fishbone, a
fishbone dispersion relation of passing fast ion-driven
fishbone is derived.

There exists a critical threshold in magnetic shear for co-
injection below which beta threshold of fast beam ion for
fishbone excitation is quite low, B, i < 1%;

Above the critical shear, the beta threshold is much
higher.

The estimated mode frequency is consistent with the
observed value.

According to our estimate, 3, .;; ~ 2%. Thus the unstable
mode is mainly driven by fluid term!



Outline

Introduction to Energetic Particle (EP) Physics
Hybrid model
Quadratic form

EP interaction with MHD modes
— Internal kink mode/fishbone
— Ballooning modes
— Tearing mode
— Resistive Wall Mode (RWM)

Summary
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Energetic Particle Stabilization of Ballooning Modes in Tokamaks

shown at least with respect to ballooning and in- Under these assumptions, we can investigate
ternal kink modes. linear stability by means of the low-frequency
The stabilizing effects of fast ions have been | kinetic energy principle'®*' 6W=06W, + 6W,, where

the fluid term is

oWy =% f(dS/B){O'IVS |2(5 VEP+ T[Q) = (0/7)B€ - ;‘1’]2 ~ (e~ E)[é’-f7P|,1+(o/T)6-VP 4 ‘1’2} (1)

and the kinetic term (for the non-MHD energetic species) is

[J@ds/v ) (uQu+v,°€ - K®)] N | (2)

:L -b' - == = .
OWa =3 dedue VI [(ds/vi)(u€ VB +v %€ *K)

Here, @, is the (Lagrangian) magnetic field perturbation parallel to the equilibrium field §:5B, and
® is the perturbed electrostatic potential; P, , are the total pressure components; s is the arc length
along a field line, and V=V - (VB)8/8B, o=1+(P,-P,)/B? 7=1+(aP,/BoB), k=(b-V)b, n=v 2/2B,
and E=v,%/2+ uB. We have restricted attention to high—mode-number interchange-ballooning modes,
whose transverse variation is in the eikonal S, where b+:vS=0and é=BXVS/B2 Equation (2) per-
tains to the high-bounce-frequency limit, appropriate for trapped fast particles, in which their dis-
tribution function F, is constant on a field line. Hot particles trapped on the outside of a tokamak
stabilize through 6W,, but are destabilizing in 6W,.

Rosenbluth, PRL 1983



Energetic Particle Stabilization of Ballooning Modes in Tokamaks

q=2, 6k=O
24 1 2 § 77/ 1 /l T I:' 4
" Eem [ / 1
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FIG. 1. Marginal stability boundaries in shear S and

normalized core beta o,
various degrees of localization 6.

, for maximal hot beta and
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M3D-K Simulation shows an unstable (2,1) tearing mode without EP
for a model tokamak equilibrium

al! alf

o ) |~ 7

0.5 0.5 \ /
5 T 5 B r
R
g 14
] IR | R . 12
10
z 3 : : = 6
:_E_ 1l . x i |
2 Z Z = g
-3 : : 2
-5 -4
4768 526 576 B28 6.78 4768 5268 576 8626 6.76
24 R

H.S. Cai and G.Y. Fu, Phys. Plasmas 2012

72



M3D-K simulation show the effects of co-passing/counter-passing
energetic particles on tearing mode are stabilizing/destabilizing

Co-Passing
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| v e -
E RN ""-..|.,__|‘ ’.*‘* 1
L | *_ ‘-+""-.r-r- --------- =1
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0 2 4 B 8 10
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ﬁh(xll] }
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H.S. Cai and G.Y. Fu, Phys. Plasmas 2012
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Stabilization of the resistive wall mode instability by
trapped energetic particles

L 5WOO+5WK0
D=-iot, + =0,
5Wb+ 5WKO

oW, =—-2"27Rm, f Brdr f da f dEE’?K,J* Hao, PoP 2011

X < 7,
W — wWy— Wy

5WMHD,h= - f d3x(§¢ 'VPhJ_)(gj_  K),



Stabilization of the resistive wall mode instability by
trapped energetic particles

0.8
_ QO=0.0
- QO=_0'1
----- QO=—0.3 N

= oo | Q,=-0.7 S~ .
Hao, PoP 2011
0.4t e R
0.2+
0 | i 1 | |
0 0.05 0.1 0.15 0.2 0.25 0.3

B*

FIG. 6. The RWM normalized growth rate I" as functions of the EPs beta 3*
for various values of the plasma rotation frequency {),. The wall position is
taken as b=1.2.



Energetic particle stabilization of
RWM and excitation of fishbone-like mode

SW™ + W, + 6Wymn s

D=—iwT,, + 0,
Y WP + W, + §Wympa
6 (a) :I 2.5 (b) ' ' ) ;;
H 2 !
Sl Hao, PRL 2011
;e 1 (B *c’ Qc) £
0.5//»;“\
0 0.65 0:1 0.I15 0.2 0 0.65 0:1 . 0..15 0.2
B B

FIG. 1. The (a) normalized growth rate y7, and (b) mode
frequency of the conventional RWM mode (solid curve) and the
FLM (dashed curve) as functions of the trapped EPs’ 8%, for the



Summary

Kinetic response of energetic particles;

Hybrid model

Quadratic form;

EP stabilization of internal kink and excitation of fishbone
EP transport due to sawteeth, fishbone and NRK

EP stabilization of ballooning modes

EP effects on tearing modes;

EP effects on RWM
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