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Magnetically confined fusion

1.1 Fusion configurations

Toroidal configurations⇒ suppress the loss cone

Rotational transform [ι = 1/q, where q is safety factor]

⇒ reduce direct drift orbit loss

− Non-axisymmetric magnetic configurations employ

external coils to generate ι

− Axisymmetric machines use the toroidal plasma

current

Tokamak achieved the highest performance nTτE
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Tokamak magnetic field configuration

1.2 Tokamak
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1.3 q profile

Magnetic field can be represented as
B⃗ =∇ψt × ∇θ − ∇ψp × ∇ζ

=∇ϕ × ∇ψp + g∇ϕ, (1)
where ϕ is the geometric toroidal angle.
Here |∇ψp| = RBp and g(ψp) = Bζ = RBT . It has
Bp/BT ∼ O(ϵ), and ϵ = a/R0 with R0 and a are major and
minor radii, respectively.

Rotational transform⇒ nested magnetic flux surfaces

− Rational or resonant surface q ≡ dψt
dψp
= m/n, where m

and n are toroidal and poloidal turns

− Edge safety factor, q95, is defined as the safety factor at

ψ̂p = 0.95 (0 at center, 1 at boundary)
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Characteristics of Divertor configuration
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1.4 EAST configuration

Nested closed magnetic flux surfaces inside the last closed
flux surface (LCS)
⇒ confinement area

A thin layer (1-2 cm) just outside the LCS is called scrape-off
layer (SOL)
⇒ open field lines cause the particles and heat flux toward
the Divertor

On separatrix between the LCS and SOL, there is a point
(or multiple points) with Bp = 0 called X point

Approaching the LCS, it has q→ ∞
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MHD momentum equation

Momentum equation from a single fluid model can be written as

ρm
d
dt

V⃗ = J⃗ × B⃗ − ∇P−∇·
↔

Π +S⃗M + O, (2)

where d
dt ≡

∂
∂t + V⃗ · ∇.

Left hand side: inertial terms. V⃗ · ∇ is the advection term that counts the non-inertial
force and non-linear effect.

Right hand side. First two terms: Compressed Alfven wave with a characteristic time
τCA ∼ 10−7s. Without pressure anisotropy, the rest terms describe the momentum
dissipation in a time scale of momentum confinement time, τM ∼ τE ∼ 10−1s.

∂2

∂t2 ξ⃗⊥ ≈ (1 + β)V2
A∇⊥

(
∇⊥ · ξ⃗⊥

)
, (3)

In the limit τCA ≪ τ ≪ τM, with negligible pressure anisotropy and V ≪ CS, the leading
terms ( black part in Eq. (2) ) forms the force balance equation.
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Ideal MHD force balance equation

Force balance equation

J⃗ × B⃗ − ∇P = 0. (4)

Thermal expansion⇔ Lorenz force

Pressure is a flux function, B⃗ · ∇P = 0. Current is lying on the flux surface. Only
perpendicular current contribute to the force balance. It has

J⃗⊥ = − J⊥
1
B

b⃗ × ∇ψp (5)

where J⊥ = − dP
dψp

.

It can also be rewritten as

∇⊥(P +
B2

2µ0
) =

B2

µ0
κ⃗, (6)

where κ⃗ ≡ b⃗ · ∇b⃗ is the curvature of the field line and ∇⊥ = ∇ − b⃗b⃗ · ∇.

Youwen Sun Tokamak equilibrium 8 / 44



Introduction Equilibrium solution Equilibrium application Equilibrium and geometric effects Appendix: Curvilinear coordinatesTokamak configuration Equilibrium equation

Radial force balance equation

1.5 Force balance

Radial force balance can be rewritten as
eψ ·

(
J⃗ × B⃗ − ∇P

)
= −

1
Bθ

(
JϕBθ − BϕJθ

)
−

dP
dψp
= 0. (7)

−∇P : Outward

Toroidal current: Inward

Poloidal current: depends on the orientation of the current. It has

βp ≡
2µ0 ⟨P⟩V〈

B2
p

〉
lcs

≈ 1 −
(

1 + κ2

2κ

)
8πBT0

(µ0Ip)2 δΦ ∼ O(1), (8)

where the diamagnetic toroidal flux δΦ can be measured from

diamagnetic loop.

− Internal inductance: li ≡
⟨B2

p⟩V
⟨Bp⟩

2
S

− Total beta: βT ≡ 2µ0 ⟨P⟩V /B2
0 ∝

ϵ2

q2
95
βp ∼ O(1%)

− Normalized beta: βN ≡ βT [aB/Ip] ∼ O(1)[%m · T/MA]

Youwen Sun Tokamak equilibrium 9 / 44



Introduction Equilibrium solution Equilibrium application Equilibrium and geometric effects Appendix: Curvilinear coordinatesTokamak configuration Equilibrium equation

Grad-Shafralov equation

Using Eq. (1) for axisymmetric case, the radial force balance equation (7) can also be
written as Grad-Shafralov equation [Grad, JNE 7, 284 (1958)], [Shafranov, JETP 6, 545 (1958)]

△∗ψp(R,Z) = −µ0R2P′ − gg′, (9)

where △∗ ≡ R2∇ · ( 1
R2∇) = R ∂

∂R ( 1
R

∂
∂R ) + ∂2

∂Z2 , P′ ≡ dP
dψp

and g′ ≡ dg
dψp

.

There are 3 unknown profiles

− left: toroidal current, △∗ψp(R,Z) = µ0Jϕ
− 1st term on the RHS : plasma pressure or perpendicular current, J⊥ = −Jα = − dP

dψp

− 2nd term on the RHS : poloidal current, dg
dψp
= −µ0

Jθ
Bθ

It is only possible to get one unique solution with the knowledge at least 2 of them.

P and g are flux function, while Jϕ = R2Jϕ is not.

Here Fϕ = F⃗ · ∇ϕ and Fθ = F⃗ · ∇θ are the contravariant components of the field.
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Solution of the G-S equation

Analytic solution with assumption of either simple current profiles or simple geometry ( for
instance, circular shaped plasma with large aspect ratio, or Solov’s solution for general
geometry but constant current profiles)

Equilibrium solution with prescribed boundary and kinetic profiles (P′, gg′) can be
numerically solved

Equilibrium reconstruction ψp(R,Z) by using least square fitting of experimental

measurements

− Current filaments method, which represents plasma as several current filaments

− Fitting method (e.g. EFIT), which represents the current profiles as truncated

polynomial functions
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Analytic solution for shift circle equilibrium

1.6 Shift circle

Writing the flux surface position as
R = R0 + r cos(χ) + ∆GS, (10a)

Z = Z0 − r sin(χ), (10b)
where ∆GS is the Grad-Shafranov shift [Shafranov, JNE 5, 251 (1963)] , [Mukhovatov, NF

6, 605 (1971)] , it has ψp ≈ ψp0(r) − ψ′p0∆GS cos χ.
The order with cos χ in G-S equation becomes

1
f 2

(
rf 2∆′GS

)′
= −

(
αp + ϵ

)
, (11)

with f =
ψ′p0

R0B0
≈ ϵ

q , ϵ = r
R0

and αp ≡ −q2Rβ′.
The solution can be written as

∆′GS(r) = − ϵ (Λ + 1) , (12)
where Λ ≡ βp +

1
2 li − 1.

The external vertical field is approximately

B⃗v ≈ −
µ0Ip

4πR0

[
ln

8R0

a
+ Λ −

1
2

]
e⃗Z . (13)
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Plasma Shaping

1.8 Forces for shaping

1.9 plasma shaping

Quadrupole field makes elongation κ = b/a, and
hexapole field makes triangularity δ = d/a.

Analytic Solov’s solution for general shape but
constant current profile has been developed
[Cerfon, PoP 17, 032502(2010)]

Miller equilibrium [Miller, PoP 5, 973 (1998)]

Youwen Sun Tokamak equilibrium 14 / 44
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Vertical instability

1.10 VDE

Vertical motion can be unstable for
certain applied vacuum vertical field

Stability depends on the index of field
decay: n ≡ − R

BVZ

∂BVZ
∂R

Vertical displacement event (VDE) can
be triggered by elongation
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EFIT reconstruction – Fitting toroidal current profile

Iteration method with an initial guess of ψp = ψp,0 is used to solve this non-linear second order
differential equation.

The terms P′ and gg′ are represented by some truncated base functions of ψp [Lao, NF 25, 1611 (1985)]

P′ ≡
M∑

m=0

αmΦm(ψp) and gg′ ≡
N∑

n=0

βnΦn(ψp). (14)

At the step l, the coefficients αml and βnl , and hence the toroidal current profile, are determined by
minimization

χ2 =
1
k

k∑
j=1

[ψ∗ps,j − ψ
c
ps,j(αm, βn)]2

σ2
j

, (15)

where

ψc
ps,j =

∫
Gps,jJt(αml, βnl, ψp,l−1)dsϕ +

∑
i

Gexs,ijIex
i , (16)

and ψ∗ps,j is measured value of the jth sensor.
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EFIT reconstruction – G-S solution

The poloidal flux distribution can be found by using one of the following two methods:

Green function method.
the poloidal flux ψp at the jth grid point of the calculation area (R,Z) at this step can be
upgraded from

ψp,l,j =

∫
Gpp,jJt(αml, βnl, ψp,l−1)dsϕ +

∑
i

Gexp,ijIex
i (17)

Solving the second order differential equation

△∗ψp(R,Z) = µ0RJt (18)

The newly obtained poloidal flux replaces the initial one and the whole process is repeated until
it converges.
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Diagnostics required for equilibrium reconstruction
External magnetic diagnostics.
For instance, flux loops, saddles and magnetic pick-up probes etc. which can accurately
determine the plasma edge flux profile. It produces mainly the information about the total toroidal
plasma current.

Intermal magnetic measurement
With the constraints from the internal magnetic measurements, for instance, MSE and polarization
interferometer, more accurate toroidal plasma current profile near the core can be obtained.

Diamagnetic measurement
produce information about the total internal poloidal current g′.

Kinetic profiles
Plasma density and temperature profiles from for instance TS and CXRS, gives the constraints on
the plasma pressure gradient. The neoclassical Bootstrap current evaluated from these kinetic
profiles can be further used for the constraints on the flux averaged parallel plasma current.

Others
Soft-X-Ray and ECE etc produce the information about the positions sawtooth inversion radius,
and other high m perturbations etc.
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Examples of equilibrium Solutions

1.11 EFIT outputs [Lao, NF 25, 1611 (1985)]
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1.12 FEQ solution [Jiang,

PST 24, 015105 (2022)]
1.13 FDEQ solution

[Dong, CPC 315, 109715(2025)]
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3D equilibrium in tokamaks

1.14 Helical core by VMEC/ANIMEC [Cooper, PRL 105,

035003 (2010)]

1.15 3D from RMP [Turn-

bull, PoP 20, 056114 (2013)]
1.16 Edge stochastic field

[Jia, PPCF 58, 055010 (2016)]
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Flux coordinates

1.17 Flux coordinates and field

aligned coordiantes

In flux coordinates (ρ, θ, ζ), the magnetic field can be
written as

B⃗ = ∇ψt × ∇θ − ∇ψp × ∇ζ

= ψ′p[q∇ρ × ∇θ − ∇ρ × ∇ζ], (19)
where prime denotes the derivative over ρ.
Since B⃗ · ∇(qθ − ζ) = 0, it is also known as straight field line
coordinates [Dhaeseleer, "Flux Coordinates and Magnetic Field Structure",

Springer,(1991)].

Using the field aligned coordinates (ρ, α = qθ − ζ, θ), it is
obvious that

B⃗ · ∇ = Bθ∂θ, (20)
and the Jacobian of (ρ, α, θ) can be written as
J−1 ≡ (∇ρ × ∇α) · ∇θ = (∇ρ × ∇θ) · ∇ζ = Bθ/ψ′p.
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Choices of flux coordinates

Radial coordinates. ρ = ρ(ψ), such as ψp, ψt, V(ψ), q(ψ) etc, e. g. ρ = ρt ≡

√
2ψt
B0

.

Other two angle-like coordinates can have different choices [Sun, PPCF 57, 045003 (2015)]

− θ is chosen for a given form of Jacobian J−1 ≡ (∇ρ × ∇θ) · ∇ζ = Bp

|ψ′p |
∂θ
∂l

∣∣∣
ψp,ϕ

via

∂θ

∂l

∣∣∣∣∣
ψp,ϕ
=
|ψ′p|

JBp
, (21)

where prime denotes derivative over ρ.

− toroidal angle like coordinate can be often chosen as

ζ ≡ ϕ − q(ψp)δ(ψp, θ), (22)

where ϕ is the geometric toroidal angle of the machine, (R, ϕ,Z) is a cylindrical

coordinates, δ is a periodic function of θ. It can be evaluated from

∂θδ =
gJ
qR2

1
ψ′p
− 1. (23)
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The form of J

For a given form of J0 and writing
J = V̂ ′J0 ⟨1/J0⟩ψ , (24)

the flux coordinates can be obtained by integrating Eqs. (21) and (23) over the poloidal
contour of the flux surface. Here ⟨...⟩ψ denotes flux average, V̂ = V/(4π2), V(ψp) is the
volume enclosed by the flux surface.

For example, if we define

J0 ≡
Ri

|∇ψp|
jBk (25)

and give a group of values of (i, j, k) one flux coordinates can be obtained.

The safety factor can be evaluated from

q(ψp) ≡
1

2π

∮
Bζ

Bθ
dθ =

V̂ ′

ψ′p
g
〈
1/R2

〉
ψ
. (26)
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Frequently used flux coordinates

The most often used straight field line coordinates are listed in the following.

PEST coordinates:
If i = 2, j = k = 0, the coordinates will be PEST coordinates. It has J0 = R2, ζ = ϕ and
J = V̂ ′ < 1/R2 >ψ R2 = V̂ ′ < B2

t >ψ /B
2
t . It is also named as the basic straight field line

coordinates.

Hamada coordinates:
If i = j = k = 0, the coordinates will be Hamada coordinates. It has J0 = 1, and J = V̂ ′.

Boozer coordinates:
If i = 0, j = 0, k = 2, the coordinates will be Boozer coordinates. It has J0 = 1/B2, and
J = V̂ ′ < B2 >ψ /B2.

Equal-arc coordinates:
If i = j = 1, k = 0, the coordinates will be Equal-arc coordinates. It has J0 = 1/Bp,
∂lθ|ψp,ϕ = 2π/l, and J = V̂ ′ < Bp >ψ /Bp.
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Example of flux coordinates
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1.18 Examples for EAST equilibrium [Sun, PPCF 57, 045003 (2015)] 1.19 3D view of constant ζ grids
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Geometric properties and their relations

1.20 (⃗e1 = e⃗n, e⃗2 = b⃗ × e⃗1, b⃗)

[Sun, AIP advances 14, 055206 (2024)]

e⃗2 ≡b⃗ × e⃗n = −
1
λR

(
R2∇ϕ −

g
B

b⃗
)

=λR∇sα, (27)
where ∇s = ∇ − e⃗1e⃗1 · ∇, and
λ ≡

Bp
B = ψ

′
p
|∇ρ|
RB .

Curvature of field line can be written as

κ⃗ = b⃗ · ∇b⃗ ≡ κne⃗1 + κge⃗2 =
µ0

B2∇⊥(P +
B2

2µ0
) ≈

1
B
∇⊥B. (28)

Another important curvature is κρ defined as

κρ ≡ κ⃗ · eρ =
1
|∇ρ|

(
κn − κgΛ̄0

)
≈ −

1
R0

[
cos θ + sin θ

(
sθ − αp sin θ

)]
, (29)

where Λ̄0 ≡
e⃗1 ·∇α
e⃗2 ·∇α

≈ Λ0 ≡ sθ − αp sin θ, s ≡ ρ

q q′ is the global magnetic
shear, and αp ≡ −q2Rβ′. It has κn ≈ −

cos θ
R and κg ≈

sin θ
R .

Torsion of field line can be written as
τn ≡ −e⃗1 ·

(⃗
e2 · ∇b⃗

)
(30)

Local magnetic shear
s1 ≡ e⃗2 · ∇ × e⃗2 ≈ b⃗ · ∇Λ̄0 ≈ b⃗ · ∇

(
sθ − αp sin θ

)
. (31)

It has σ ≡ µ0J∥
B = s1 + 2τn, and b⃗ · ∇σ = b⃗ · ∇σps = κg|∇ρ|

2µ0P′

B2 .
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Example of Geometric properties

1.21 Some geometric properties [Sun, AIP advances 14, 055206

(2024)]
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1.22 EAST 52340 [Sun, PoP 26, 072504 (2019)]
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Vector representation and differential operators

Any vector field can be expressed as A⃗ ≡ Aiei ≡ Aiei.
Here Ai = A⃗ · ei and Ai = A⃗ · ei are the covariant and contravariant parts of the vector,
respectively. It has Ai = gijAj, Ai = gijAj.

Usually, either ei or ei is not a unit vector. Therefore, both the covariant and contravariant
parts of the vector are different from the physical values in the corresponding direction.

The gradient, divergence, curl and Laplacian can be written as

∇f = ∇α
∂

∂α
f , (32a)

∇ · V⃗ = J−1 ∂

∂α
(JVα), (32b)

∇γ · (∇ × V⃗) = J−1(
∂

∂α
Vβ −

∂

∂β
Vα), (32c)

∇2f = ∇ · ∇f = J−1 ∂

∂α
(Jgαβ

∂

∂β
f ). (32d)
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Example of reduced differential operators
For k∥ ≪ k⊥, it has

∇ · F⃗
F⃗⊥≡

B⃗×∇f
B2

−−−−−−−→ B∇∥(F∥/B) +K(f ), (33a)

∇∥f ≈
G∥
qR0

∂θf −
qB
ρB0
{Ã/B, f }ρα, (33b)

∇2
⊥f ≈

G
ρ
∂ρ

[
ρ

G
(gρρ∂ρ + gρα∂α)

]
f + ∂α

[
(gρα∂ρ + gαα∂α)

]
f , (33c)

V⃗E · ∇f ≡
B⃗ × ∇Φ

B2 · ∇f ≈
q
ρB0
{Φ, f }ρα, (33d)

K(f ) ≡∇ ·
 B⃗ × ∇f

B2

 ≈ q
ρB0B2

[
∂ρB2∂αf −

RG∥
qR0

∂θB2∂ρf
]
, (33e)

where the Poison bracket {A,B}ρα = ∂ρA∂αB − ∂αA∂ρB, G ≡ g
〈
1/R2

〉
ψ
, and G∥ ≡

RR0⟨1/R2⟩ψ
J0⟨1/J0⟩ψ

≈ 1.

Shift metric method [Scott, PoP 8, 447 (2001)] , α→ αk = q(θ − θk) − ζ + δk(ρ) so that gραk |θ=θk = 0, is
necessary to conquer the difficulty in the evaluation of radial derivative, and it has
∇2
⊥f ≈ G

ρ
∂ρ[

ρ

G (gρρ∂ρ)]f +
q2

ρ2 ∂
2
αk

f .
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An alternative method using geometric properties
Using geometric properties [Sun, AIP advances 14, 055206 (2024)], the fundamental differential operators can also be rewritten
as

Divergence

∇ · F⃗ =
3∑

j=1

(⃗
ej · ∇Fj

)
− (κnd + κn) F1

−
(
ĝκp + κg

)
F2 −

λ

ĝ
κgF3, (34)

where ĝ = g/(RB).

Directional derivative

e⃗i · ∇F⃗ =
(
Md + Ie⃗i · ∇

) 
F1
F2
F3

 , (35)

where Md =


0 −b⃗ · d⃗i e⃗2 · d⃗i

b⃗ · d⃗i 0 −e⃗1 · d⃗i

−e⃗2 · d⃗i e⃗1 · d⃗i 0

, and

d⃗i = e⃗i × κ⃗i + τie⃗i, κ⃗i ≡ e⃗i · ∇e⃗i, and
τi ≡ δijk

(⃗
ei · ∇e⃗j

)
· e⃗k.

Curl

∇ × F⃗ =
(
RT +Mc

) 
F1
F2
F3

 , (36)

where R =


0 −λκp ĝκp
κbd s1 −κnd
−κg κn σ

, and

Mc =


0 −b⃗ · ∇ e⃗2 · ∇

b⃗ · ∇ 0 −e⃗1 · ∇

−e⃗2 · ∇ e⃗1 · ∇ 0

.
The second order derivative

∇2f =
(
b⃗ · ∇

)2
f −

λ

ĝ
κgb⃗ · ∇f − κ⃗ · ∇f + ∇2

⊥f , (37)

where ∇2
⊥f =

(⃗
e1 · ∇

)2 f − κnd e⃗1 · ∇f +
(⃗
e2 · ∇

)2 f − ĝκpe⃗2 · ∇f .

K(f ) ≡ ∇ ·
(

B⃗×∇f
B2

)
= −2κ⃗ · B⃗×∇f

B2 −
|∇ρ|
B

µ0P′

B2 e⃗2 · ∇f .
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Flux function and flux surface average
A variant which is only a function of magnetic flux is call flux function, such as q(ψ),
g(ψ), P(ψ), T(ψ), and N(ψ) etc.

Some of the variants depend on the geometry of the flux surface, for example, R, B, and
Jϕ etc are all not flux function.

In transport studies, the transport flux is often evaluated on each flux surface. It is
necessary to do the flux surface average for those non-flux functions.

Flux surface average in tokamak

⟨F⟩ψ =

∮
s FJdθdϕ∮
sJdθdϕ

=

∮
l FJdθ∮
lJdθ

=
1

2πV̂ ′

∮
l
FJdθ =

∮
l F(dl/Bp)∮

l(dl/Bp)
(38)

where V̂ ′ ≡ dV̂/dρ = 1
2π

∮
lJdθ. If ρ = ρt, then V̂ ′ = ρB0

g⟨1/R2⟩ψ
.

One important flux surface average term in transport studies [Hinton, RMP 48, 239 (1976)]〈
∇ · F⃗

〉
ψ
=

〈
J−1∂ρ(JFρ)

〉
ψ
=
∂ρ[⟨Fρ⟩ψ

∮
Jdθ]∮

Jdθ
=

1
V̂ ′
∂ρ[V̂ ′ ⟨Fρ⟩ψ] (39)
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Flow decomposition in a toroidal configuration

1.23 Vector decomposition

From geometric relation
1
B

b⃗ × ∇ψp =
Bζ

B
b⃗ − eζ , (40)

it has

V⃗ = V∥b⃗ −Ω⊥(ψ)
1
B

b⃗ × ∇ψp

= Ω̂θ(ψ)B⃗ + Ω⊥(ψ)eζ , (41)
where

Ω̂θ ≡
Vθ

Bθ
=

V∥
B
−

Bζ

B2Ω⊥, (42)

Ω⊥ ≡ΩE + Ω∗ (43)
are flux functions [Sun, NF 51, 053015 (2011)]. Here
ΩE = −

dΦ
dψp

and Ω∗ = − 1
Ne

dP
dψp

are E⃗ × B⃗ and
diamagnetic drift frequency, respectively.
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Toroidicity induced Pfirsch-Schlüter current

From B ∝ 1
R , it has

B ≈ B0(1 − ϵ cos θ). (44)

It is easy to obtain that

σ ≡
µ0J∥

B
= −[

g
B2 µ0

dP
dψp
+

dg
dψp

], (45)

which is an important equilibrium property.

let’s write σ = σ̄ + σps, it has σ̄ ≡ µ0
⟨J∥B⟩ψ
⟨B2⟩ψ

is the net parallel current and

σps ≡
µ0Jps
∥

B
= −µ0g

 1
B2 −

1〈
B2〉

ψ

 dP
dψp

(46)

is the so-called Pfirsch-Schlüter current. This is an important toroidal effect. It can be
evaluated, after the equilibrium solution is obtained.

Neoclassical transport in Pfirsch-Schlüter regime: Γ ∝
〈

1
B2 −

1
⟨B2⟩ψ

〉
ψ
∝ 2q2
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∇B, toroidicity and curvature

1.24 Particle orbits

Toroidicity⇔ asymmetry of B in high and low field sides.

∇B = b⃗
(
b⃗ · ∇B

)
+ Bκ⃗−

µ0

B
∇P. (47)

The first term on the RHS, i.e. b⃗ · ∇B, produces the mirror field
and causes trapped particles with banana orbit
(ρp ≈ 2

√
2 q
√
ϵ
ρg).

∇⊥B or curvature causes the drift motion of guiding center. The
toroidal drift frequency can be written as [Sun, PoP 26, 072504 (2019)]

ωB = −

(
κρ −

µ0P′

B2

) (
1 + ξ2

)
E

eψ′p
. (48)

Driving term for interchange and ballooning mode [Connor, PRL 40,

396 (1978)] : ∝ −P′κρ
Toroidicity induced parallel viscosity which causes the damping
of the poloidal flow near the plasma core

Electron parallel viscosity induces the Bootstrapped current
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Equilibrium and geometric effects on stabilities

Pressure gradient driving term
δWF ∝ κρ ∝ −

[
cos θ + sin θ

(
sθ − αp sin θ

)]
, (49)

where interchange mode driving DI = dm
αp

s2 −
1
4 with

dm ∝ −
〈
κρ

〉
ψ
.
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Z
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1.25 dm [Sun, AIP advances 14, 055206

(2024)]

1.26 Second stability regime

[Lortz, PLA 68, 49 (1978)]

Toroidal precessional frequency
⟨ωB⟩b ∝ −

〈
κρ

〉
b

≈ ⟨cos θ⟩b + s ⟨θ sin θ⟩b − αp

〈
sin2 θ

〉
b
.

(50)
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κ
2
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b
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1.27 Precession
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Equilibrium for operational scenario development

1.28 ITER operational Scenarios [Sun, Acta

Phys. Sin. 73, 175202 (2024)]

Global MHD stabilities
− q95 =

aB
I S have a strong influence on the global MHD β limit

− βcrit
N = 4li ⇒ Global MHD stability depends on current density

and pressure profiles
− Curvature couples the global MHD modes driven by current

density and pressure gradients
− Toroidal and shaping effects create gap modes e.g. TAE mode

Micro-instabilities and transport
− Global magnetic shear s has stabilization effect on interchange

mode
− The second stability regime of ballooning mode is linked to the

increase of the local magnetic shear (αp effect in Λ̄0 and κρ) in
weak global shear case

− Geodesic curvature couples the ion sound wave and Alfvén
wave forming Geodesic Acoustic Mode (GAM) or Beta induced
Alfvén Eigenmode (BAE) etc
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Curvilinear coordinates

The Jacobian for coordinate transfrom from Cartesian coordinates (x, y, z) to a
curvilinear coordinates (α, β, γ) is defined as

J ≡
∂(x, y, z)
∂(α, β, γ)

= [(∇α × ∇β) · ∇γ]−1 (51)

The differential volume can be written as dV = dxdydz = Jdαdβdγ.

Contravariant base vectors
(eα, eβ, eγ) ≡ (∇α,∇β,∇γ), (52)

and covariant base vectors
(eα, eβ, eγ) ≡ (∂αX⃗, ∂βX⃗, ∂γX⃗) = J(∇β × ∇γ,∇γ × ∇α,∇α × ∇β). (53)

It has ei · ej = δij, and eα × eβ = Jeγ.
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Geometric meaning of the Curvilinear coordinates

1.29 Geometric meaning of the Curvi-

linear coordinates

(α = const, β = const, γ = const) are the
coordinate surfaces.

(α, β, γ) are the coordinate lines.

The contravariant coordinates
(eα, eβ, eγ) ≡ (∇α,∇β,∇γ) are normal to
the coordinate surfaces

The covariant coordinates (eα, eβ, eγ) are
tangential to the coordinate lines.
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Metrics

The metrics of the coordinates are defined as: gαβ = eα · eβ and gαβ = eα · eβ.

It has gijgjk = δik (two j means summary over all the coordinates, this will also be used as
default in the following) and ei = gijej.

The relationship between the metrics and the Jacobian can be written as
det(gij) = 1/J2 and det(gij) = J2 (54)

The covariant of the metrics can be calculated from the contravariant of the metrics with
gαα = J2[gββgγγ − (gβγ)2] (55a)

gαβ = J2[gαγgβγ − gαβgγγ] (55b)
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Metrics evaluation for flux coordinates

All the metrics gαβ (contra-variants), gαβ (co-variants) can be written as a combination of
gρρ, gρθ, gθθ.
The basic metrics gρρ, gρθ and gθθ can be calculated from the following equations

gρρ =

(
R
J

)2

[(∂θR)2 + (∂θZ)2] (56)

gρθ = −

(
R
J

)2

[∂ρR∂θR + ∂ρZ∂θZ] (57)

gθθ = [(gρθ)2 + R2/J2]/gρρ (58)
The covariants of the metric can be transformed form the contravariant ones by using their
definitions.
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Other useful formulas
Some other useful identities about operators:

∇ × ∇f = 0 (59a)
∇ · (∇f × ∇g) = 0 (59b)
∇ · (A⃗ × B⃗) = B⃗ · ∇ × A⃗ − A⃗ · ∇ × B⃗ (59c)
∇ × (A⃗ × B⃗) = [∇ · B⃗ + B⃗ · ∇]A⃗ − [∇ · A⃗ + A⃗ · ∇]B⃗ (59d)
A⃗ × (∇ × B⃗) = (∇B⃗) · A⃗ − (A⃗ · ∇)B⃗ (59e)
∇(A⃗ · B⃗) = A⃗ × (∇ × B⃗) + B⃗ × (∇ × A⃗) (59f)

+(A⃗ · ∇)B⃗ + (B⃗ · ∇)A⃗ (59g)
∇2A⃗ = ∇(∇ · A⃗) − ∇ × (∇ × A⃗) (59h)

∇ · (A⃗B⃗) = (∇ · A⃗)B⃗ + (A⃗ · ∇)B⃗ (59i)∮
v
∇ · A⃗dv =

∮
s
A⃗ · d⃗s (59j)∮

s
∇ × A⃗ · d⃗s =

∮
l
A⃗ · d⃗l (59k)
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