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Introduction Tokamak configuration Equilibrium equation

confined fusion

@ Toroidal configurations = suppress the loss cone

@ Rotational transform [ = 1/gq, where g is safety factor]
= reduce direct drift orbit loss
— Non-axisymmetric magnetic configurations employ
external coils to generate «

— Axisymmetric machines use the toroidal plasma
current

@ Tokamak achieved the highest performance nTtg

Z pinch Mirror

1.1 Fusion configurations
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Introduction

Tokamak configuration Equilibrium equation

Tokamak magnetic field configuration

1.3 q profile

@ Magnetic field can be represented as
B =V, x V0 - Vi, x V¢
=V X Vi, +gV¢, (1)
where ¢ is the geometric toroidal angle.
Here |Vy,| = RB, and g(y,) = B; = RBr. It has
B, /Bt ~ O(¢), and € = a/Ry with Ry and a are major and
minor radii, respectively.
@ Rotational transform = nested magnetic flux surfaces

— Rational or resonant surface g = %’,’; = m/n, where m
and n are toroidal and poloidal turns
— Edge safety factor, gys, is defined as the safety factor at

¥, = 0.95 (0 at center, 1 at boundary)
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Introduction

Tokamak configuration Equilibrium equation

Characteristics of Divertor configuration

Probe
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1.4 EAST configuration

flux surface (LCS)

= confinement area

A thin layer (1-2 cm) just outside the LCS is called scrape-off
layer (SOL)

= open field lines cause the particles and heat flux toward
the Divertor

On separatrix between the LCS and SOL, there is a point
(or multiple points) with B, = 0 called X point

Approaching the LCS, it has ¢ —
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Introduction Tokamak configuration  Equilibrium equation

MHD momentum equation

Momentum equation from a single fluid model can be written as

d - - = A4 =
panVzJXB—VP*V'H+SM+O, (2)

where £ = 2 1+ V. V.
o Left hand side: inertial terms. V - V is the advection term that counts the non-inertial
force and non-linear effect.
@ Right hand side. First two terms: Compressed Alfven wave with a characteristic time
Tca ~ 1077s. Without pressure anisotropy, the rest terms describe the momentum
dissipation in a time scale of momentum confinement time, ), ~ 7z ~ 107's.

0 5 >
b 2 1 +PVIVL (V.- &), (3)

@ Inthe limit ¢y < T < 7y, With negligible pressure anisotropy and V <« Cg, the leading
terms ( black part in Eq. (2) ) forms the force balance equation.
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Introduction Tokamak configuration  Equilibrium equation

Ideal MHD force balance equation

Force balance equation
JxB-VP=0. (4)

@ Thermal expansion & Lorenz force

@ Pressure is a flux function, B - VP = 0. Current is lying on the flux surface. Only
perpendicular current contribute to the force balance. It has

N 1.
Ji==JigbxVy, (5)
where J, = —%.
@ It can also be rewritten as
B? B?
V.(P+—)=—& (6)
2uo”  po

N

where & = b - Vb is the curvature of the field line and V, = V — bb - V.
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Introduction

Radial force balance equation
Radial force balance can be rewritten as
ey (7 x B - VP)
1 dpr

_E(ﬂB(’_BM")—% =0. (7)

Tokamak configuration  Equilibrium equation

@ —VP : QOutward
@ Toroidal current: Inward

@ Poloidal current: depends on the orientation of the current. It has
2ug <P>V 1 + 2 87B710
ﬂp = ~1- 5
<Bz> (ﬂOIp)
where the diamagnetic toroidal flux 6® can be measured from

paramagnetic diamagnetic loop.
Iig (8, <1) (BZ
Diamagnetic — Internal inductance: [; = 4

| BR(B,>1) - ‘;- ( P)s

— Total beta: Br = 2ug (P)y /B} o p ﬁ,, O0(1%)
— Normalized beta: Sy = ,BT[aB/I]~O(1)[%m T/MA]
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Introduction Tokamak configuration  Equilibrium equation

Grad-Shafralov equation

@ Using Eq. (1) for axisymmetric case, the radial force balance equation (7) can also be
written as Grad-Shafralov equation (crad, JNE 7, 284 (1958)], [Shafranov, JETP 6, 545 (1958)]

AYy(R,Z) = —uoR*P’ - gg’, 9)

where A" = RV - (V) = R& (L 2)+ L P = sandg = g

@ There are 3 unknown profiles
— left: toroidal current, A*y,(R, Z) = uoJy
— 1% term on the RHS : plasma pressure or perpendicular current, J, = —J¢ = —4ap

dy,

— 2" term on the RHS : poloidal current, dj = —uoé—z

@ Itis only possible to get one unique solution with the knowledge at least 2 of them.
@ Pandg are qux function, whiIe Js = R%J? is not.

@ Here F? = V¢ and F? = F - V6 are the contravariant components of the field.
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Equilibrium solution

Solution of the G-S equation

@ Analytic solution with assumption of either simple current profiles or simple geometry ( for
instance, circular shaped plasma with large aspect ratio, or Solov’s solution for general
geometry but constant current profiles)

@ Equilibrium solution with prescribed boundary and kinetic profiles (P’, gg’) can be
numerically solved

@ Equilibrium reconstruction ¢,(R, Z) by using least square fitting of experimental
measurements
— Current filaments method, which represents plasma as several current filaments

— Fitting method (e.g. EFIT), which represents the current profiles as truncated
polynomial functions
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Equilibrium solution

Analytic solution for shift circle equilibrium

Writing the flux surface position as
R = Ry + rcos(y) + Ags, (10a)
Z =Zy — rsin(y), (10b)
where Agg is the Grad-Shafranov shift [shatranov, JNE 5, 251 (1963)] , [Mukhovatov, NF

6,605 (1971)] , it has ¥, = Y,o(r) — tﬁ[’yoAGS COS X
The order with cos y in G-S equation becomes

F 8] =~ +). il
with f = ”° vt e=gande, = —¢*Rp'.
The solutlon can be written as
Ags()=—€e(A+1), (12)

where A =, + 3/, — 1.

The external vertical field is approximately

- I 8R 1

B, ~ — Ho Ld [ 0 :| gz.

R In— +A-=
4nR a 2
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Equilibrium solution

Plasma Shaping

Divertor cqils
I

S * / Shaping coils
\/
Heating coils / ~ @

o\ Vertical field coils L
\
)
!
RN 1.9 plasma shaping
\ ~

@ Quadrupole field makes elongation « = b/a, and
_; hexapole field makes triangularity § = d/a.
doprdiic N @ Analytic Solov’s solution for general shape but
AN "X point constant current profile has been developed

_ [Cerfon, PoP 17, 032502(2010)]
1.8 Forces for shaping . o
@ Miller equilibrium qwitier, PoP 5, 973 (1998)]
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Equilibrium solution

A 4
z. 2 Be; @ Vertical motion can be unstable for

i i certain applied vacuum vertical field
._., @ Stability depends on the index of field

| : s = R 9By

: : R decay: n = —3= ¥

R f’?};z: @ Vertical displacement event (VDE) can
: ! be triggered by elongation

stable (n>0) unstable(n<0)
1.10 VDE
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Equilibrium solution

EFIT reconstruction — Fitting toroidal current

@ lteration method with an initial guess of ¥, = i, is used to solve this non-linear second order
differential equation.

@ The terms P’ and gg’ are represented by some truncated base functions of i, [Lao, NF 25, 1611 (1985)]

M N
= D @) and gg' = ) B0uW). (14)
At the step [, the coefficients «,,; e;nd Bu » and hence the tort;idal current profile, are determined by
minimization .
1 W, — w‘g (@, B
; Z Py P / , (15)
where
l/’;w' = prs,jJr((ymlsﬁnls wp,lfl)ds¢ + Z G(’XS,fj[fxs (1 6)

and i, is measured value of the j™ sensor.
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Equilibrium solution

EFIT reconstruction — G-S solution

The poloidal flux distribution can be found by using one of the following two methods:

@ Green function method.
the poloidal flux ¥, at the j grid point of the calculation area (R, Z) at this step can be
upgraded from

wp,l,]' = prpJJt(amluBnl, ¢p,l—1)d5¢ + Z Gexp,ijll‘ex (1 7)
@ Solving the second order differential equation

A'Yp(R. Z) = poRJ; (18)

The newly obtained poloidal flux replaces the initial one and the whole process is repeated until
it converges.
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Equilibrium solution

Diagnostics required for equilibrium reconstruction

@ External magnetic diagnostics.
For instance, flux loops, saddles and magnetic pick-up probes ezc. which can accurately
determine the plasma edge flux profile. It produces mainly the information about the total toroidal
plasma current.

@ Intermal magnetic measurement
With the constraints from the internal magnetic measurements, for instance, MSE and polarization
interferometer, more accurate toroidal plasma current profile near the core can be obtained.

@ Diamagnetic measurement
produce information about the total internal poloidal current g’.

@ Kinetic profiles
Plasma density and temperature profiles from for instance TS and CXRS, gives the constraints on
the plasma pressure gradient. The neoclassical Bootstrap current evaluated from these kinetic
profiles can be further used for the constraints on the flux averaged parallel plasma current.

@ Others
Soft-X-Ray and ECE etc produce the information about the positions sawtooth inversion radius,
and other high m perturbations etc.
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Equilibrium solution

Examples of equilibrium Solutions

4
== 1 4
s 0
1
6 -
o 5 At
a S
0.5
2 N .2
E 00 0.5 10
N 1 0 3+ \
-0.1 _
of [ L,
= -0.2 -4t (
1 0.3 l Analytical
> -0.4 5 5 7 5 g J ‘ - - -" Slmulared
0-5 Rm 4 5 6 7
. 0. . R
2 } ) 05 1”° 1.12 FEQ solution iang,
Rm) v 1.13 FDEQ solution
PST 24, 015105 (2022)]
1.11 EFIT outputs [Lao, NF 25, 1611 (1985)] [Dong, CPC 315, 109715(2025)]
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Equilibrium solution

3D equilibrium in tokamaks
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1.14 Helical core by VMEC/ANIMEC [Cooper, PRL 105, 1.15 3D from RMP [turn- 141618 2 22
R(m)
035003 (2010)] bull, PoP 20, 056114 (2013)]

1.16 Edge stochastic field

[Jia, PPCF 58, 055010 (2016)]
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Equilibrium application Flux coordinates Geometric properties Differential operators

Flux coordinates

@ In flux coordinates (p, 6, {), the magnetic field can be

written as
. B = Vy,xVO-Vy,x V¢
" > | = U}lq¥p x V8- Vpx V] (19)
" \;__qgjr 5D where prime denotes thg Fjerlvatlve over p. . _ .
| /98 Since B - V(g8 - {) = 0, it is also known as straight field line
coordinates [phaeseleer, "Flux Coordinates and Magnetic Field Structure”,
Oresr Springer,(1991)].
¢ @ Using the field aligned coordinates (p,a = g0 — ¢, 0), itis
1.17 Flux coordinates and field obvious that
aligned coordiantes B-V = By, (20)

and the Jacobian of (p, a, 8) can be written as
J'=(VpxVa) Vo= (VpxV0O)- V= B"/w[’,.
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Equilibrium application Flux coordinates Geometric properties Differential operators

Choices of flux coordinates

@ Radial coordinates. p = p(¥), such as ¥, ¥, V), q() etc,e. 9. p = p; = ,IZB—V;’.

@ Other two angle-like coordinates can have different choices [sun, ppcF 57, 045003 (2015)]

— @is chosen for a given form of Jacobian J~! = (Vp x V) - V/ = % %’ o via
14 P

80| Wyl

ally,s IB,

where prime denotes derivative over p.

(21)

— toroidal angle like coordinate can be often chosen as
{=¢—qWp)W,,0), (22)
where ¢ is the geometric toroidal angle of the machine, (R, ¢, Z) is a cylindrical

coordinates, ¢ is a periodic function of 6. It can be evaluated from

agazﬂi—l. (23)

qRr* ¥,
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Equilibrium application Flux coordinates Geometric properties Differential operators

The form of J

@ For a given form of J, and writing
T =V Jo 11Ty (24)
the flux coordinates can be obtained by integrating Egs. (21) and (23) over the poloidal
contour of the flux surface. Here (...),, denotes flux average, V = v/4n?), V(y,) is the
volume enclosed by the flux surface.

@ For example, if we define

Ri
= ——— 25
Jo V0, Bt (25)
and give a group of values of (i, j, k) one flux coordinates can be obtained.
@ The safety factor can be evaluated from
1 (B 1% X
4Wy) = - 9§ﬁd9 = w—;’g(l/R )w. (26)
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Equilibrium application Flux coordinates Geometric properties Differential operators

used flux coordinates

The most often used straight field line coordinates are listed in the following.

@ PEST coordinates:
If i =2, j = k=0, the coordinates will be PEST coordinates. It has 5y = R?, ¢ = ¢ and
J =V <1/R>,R*=V" < B>, /B ltis also named as the basic straight field line
coordinates.
@ Hamada coordinates:
If i = j = k = 0, the coordinates will be Hamada coordinates. It has Jy = 1,and J = V’.
@ Boozer coordinates:
Ifi =0, j=0, k=2, the coordinates will be Boozer coordinates. It has J, = 1/B?, and
j = ‘A/, <B2 >¢, /B2
@ Equal-arc coordinates:
Ifi=j=1, k=0, the coordinates will be Equal-arc coordinates. It has Jy = 1/B,,
00ly, 4 = 2n/l,and J = V' < B, >, /B,.
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Equilibrium application Flux coordinates Geometric properties Differential operators

Example of flux coordinates

1.18 Examples for EAST equilibrium (sun, PPCF 57, 045003 (2015)] 1.19 3D view of constant £ grids
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Equilibrium application Flux coordinates Geometric properties Differential operators

Geometric properties and their relations

@ Curvature of field line can be written as
1
R=5b-Vb=ux2 + K&y = l(P+—)~ —Vl (28)
Another important curvature is «, defmed as
| - 1
,=K-e, = — (ky —KeAg) ¥ —— 0 +sinf(s0 — a,sind)|, (29
=R =g (K Kq 0) e [cos sin (s @, sin )] (29)

N
é]

where Ay = &V 3 ~ Ng = 56— a,sind, s = " q’ is the gIobaI magnetic

2 ~ Y] - 9
shear, and a), = —¢’Rg'. It has k, ~ —*3* and Ko ~ S20

@ Torsion of field line can be written as

120 (8, = 2,, & = bx 2, b)

tn= -2 (2 VD) (30)
[Sun, AIP advances 14, 055206 (2024)]
@ Local magnetic shear
ngngn: /IR(RZV¢ ) S]Eé)z'vxgzZE'V[_\OQE'V(SG—Q,,SHIH) (31)
=ARV,a, (27) lthas o= “l = 5, +21,,and b - Vo = b - Vo, = k,|Vp| 28"
wherée V,=V —elé’l -V, and
p Vol

A= % =y, 5.
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Equilibrium application Flux coordinates Geometric properties Differential operators

Example of Geometric properties

04 EAST #52340 @3150 ms
0.3 6l =l
0.2
s
0.1
0 4
01  3f
0.2 L
0.3
y 1k -
8 — > -0.4
1.41.61.8 2 2.2 1.41.61.8 2 2.2 1.41.61.8 2 2.2 0
R(m) 0

1.21 Some geometric properties [sun, AIP advances 14, 055206 1.22 EAST 52340 [Sun, PoP 26, 072504 (2019)]
(2024)]
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Equilibrium application Flux coordinates Geometric properties Differential operators

Vector representation and differential operators

@ Any vector field can be expressed as A = Ale; = Ase.
Here A, =A-e;and A’ = A - ¢/ are the covariant and contravariant parts of the vector,
respectively. It has A; = g;A/, A" = gVA;.

@ Usually, either ¢’ or ¢; is not a unit vector. Therefore, both the covariant and contravariant
parts of the vector are different from the physical values in the corresponding direction.

@ The gradient, divergence, curl and Laplacian can be written as

Vf = vaif, (32a)

oo
v.i = gL gvm, (32b)

oa

. oo a1 9, 0
VY (Vx V) = IV aﬁm (32¢)
2 _ . _ —li aﬁﬁ

VI o= VeV =TT aﬁf). (32d)
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Equilibrium application Flux coordinates Geometric properties Differential operators

Example of reduced differential operators

@ Forky <k, ithas

Fz B><V/

V-F —>BV\(F||/B)+7<(f) (33a)
Vif =—- a&f_ T A/prm (33b)
Vif zzap [E(gppap n gp“aa)]f +0, [(gp"ap + gwaa)]f, (33c)
. Bx VO
Ve Vf =220 U & @ f) (33d)
—v. B < Vf q B _ G 2
K(f) =V ( = ) o [ B0 ~ LB aﬂf} (33e)

. ) RRo(1/R),,
where the Poison bracket {A, B},, = 8,40,B — 0,A9,B, G = g <1/R >w’ and Gy = ToT),
v

@ Shift metric method [scott, PoP 8, 447 (2001)], @ — ax = (0 — 6) — £ + Sk(p) SO that g#%|g_g, = 0, is
necessary to conquer the difficulty in the evaluation of radial derivative, and it has

V3f ~ 90,[4(e70,)If + ¢ TR f.
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Equilibrium application Flux coordinates Geometric properties Differential operators

An alternative method using geometric properties

Using geometric properties [Sun, AIP advances 14, 055206 (2024)], the fundamental differential operators can also be rewritten

as
@ Divergence @ Curl
I Fy
VoF =38 VE) = (ka + ) Fy VxF=(RT+M.)|F, |, (36)
J=1 F3
A o
- (§Kp + Kg) Fy — —kF3, (34) 0 -k, 8Kp
. 8 where R=|kpa  s1  —knal|, and
where § = g/(RB). kg K o
@ Directional derivative 0 bV v
Fy M.=|b-v 0 v|
> 2 5 - T : e -
é;-VF =(Md+]ei~V)[F2], (35) ‘ &V 2.V 0
F
0 2.3 } 2.3 @ The second order derivative
—b-dj 2 dj 2, (7 o\, A 2 o o 5
whereMy=| B-d, 0 - -d;| and V=BV - Gk Y -RV VI (37)
-&-d;i @ -d 0 where V2f = (&) - V)* f — kw1 - Vf + (@2 - V)* f — 8,22 - V-
3' =& xRk +71é,k =¢-Vé,and _ Bxvf S Bxvf Vol uoP EA
= o (@ V2) . @ K(H=V- ( <t ) = op. By _m - Vf.
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Equilibrium and geometric.

Contents

@ Equilibrium and geometric effects
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Equilibrium and geometric.

Flux function and flux surface average

@ A variant which is only a function of magnetic flux is call flux function, such as g(¥),
8W), P), T(¥), and N(y) etc.

@ Some of the variants depend on the geometry of the flux surface, for example, R, B, and
J etc are all not flux function.

@ In transport studies, the transport flux is often evaluated on each flux surface. It is
necessary to do the flux surface average for those non-flux functions.

@ Flux surface average in tokamak

Fgdod Fgdo Fdl/B
_$FT ¢_563‘_19§ng_9§</,,>
l

(F), = = = — = 38
""" $gdeds  §gdo  2aV §di/B,) 9
(77 — ¢ _ 1 _ 77 _ B,
where V' = dV/dp = 3~ §.9d6. If p = p,, then V" = g<f/R°z>w-
@ One important flux surface average term in transport studies (Hinton, RMP 48, 239 (1976)]

R B[Py, $TdO] 1 .
V-EY =(978,(TF)) = 2—L = [V 39
(V-F), = (T '0.(TF)), § 940 SOV ()] (39)
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Equilibrium and geometric.

Flow decomposition in a toroidal configuration

From geometric relation

S 1 - B( -
0 beva = Eb—e_(, (40)
it has
— - 1 -
Vi o= Vib- QJ_(W)Eb x Vi,
= Q'WB+Q We,. (41)
: where
~ V'V B
Qg =ﬁ = E—EQL, (42)
QL EQE +Q, (43)
are flux functions (sun, NF 51, 053015 (2011)). Here
Qp = —g—z and Q, = —Nie% are E x B and
1.23 Vector decomposition diamagnetic drift frequency, respectively.
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Equilibrium and geometric.

induced Pfirsch-Schllter current

From B o 1, it has

B =~ By(1 — ecos6). (44)
It is easy to obtain that
o=l e B g (45)
which is an important equilibrium property.
let’s write o = & + 07, it has 0 = po <<Jl!f>>: is the net parallel current and
J”

is the so-called Pfirsch-Schliiter current. This is an important toroidal effect. It can be
evaluated, after the equilibrium solution is obtained.

Neoclassical transport in Pfirsch-Schllter regime: T « <# - ﬁ> o« 2g°
vly
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Equilibrium and geometric.

VB, toroidicity and curvature

Toroidicity & asymmetry of B in high and low field sides.

passing

"
trappe
! j ou)

1.24 Particle orbits

VB=5(5- VB)+B/?—@VP (47)

The first term on the RHS, i.e. b VB, produces the mirror field
and causes trapped particles with banana orbit
~2V2L \fpg

VLB or curvature causes the drift motion of guiding center. The
toroidal drift frequency can be written as (sun, Pop 26, 072504 (2019)]

( MoP') (1+&)E
wp = — |k, — _
2 ey
Driving term for interchange and ballooning mode (connor, PRL 40,
306 (1978)] : o< —P’k,

(48)

Toroidicity induced parallel viscosity which causes the damping
of the poloidal flow near the plasma core

Electron parallel viscosity induces the Bootstrapped current
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Equilibrium and geometric.

Equilibrium and geometric effects on stabilities

@ Pressure gradient driving term @ Toroidal precessional frequency
SWr o< K, oc — [cos 0+ sin9(s9 — a, sin 9)] , (49) (wg)y o — </< >
Plp

where interchange mode driving D; = d,, % — § with
dy < — <Kp>w.

[—<cos 6>,

- - <0sinf>,

—meessin 205 |

0 0.2 04 0.6 08 1
P

L L L L
0 0.2 04 0.6 08 1

1.25 d,, [Sun, AIP advances 14, 055206 1.26 Second stability regime 2

(2024)] [Lortz, PLA 68, 49 (1978)] 1.27 Precession
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~ (cos ), + s(fsinb), — a, <sin2 0>h .

(50)


https://doi.org/10.1063/5.0188106
https://doi.org/10.1063/5.0188106
https://doi.org/10.1016/0375-9601(78)90753-3

Equilibrium and geometric.

Equilibrium for operational scenario development

@ Global MHD stabilities
- Qo5 = ",—BS have a strong influence on the global MHD g limit
— Byt = 41; = Global MHD stability depends on current density
q and pressure profiles
— Curvature couples the global MHD modes driven by current
density and pressure gradients
— Toroidal and shaping effects create gap modes e.g. TAE mode

@ Micro-instabilities and transport
— Global magnetic shear s has stabilization effect on interchange

AEs & EPM e mode
“ 1 — The second stability regime of ballooning mode is linked to the
5 s increase of the local magnetic shear (¢, effect in Ay and «,) in
weak global shear case
1.28 ITER operational Scenarios [sun, Acta — Geodesic curvature couples the ion sound wave and Alfvén
Phys. Sin. 73, 175202 (2024)] wave forming Geodesic Acoustic Mode (GAM) or Beta induced

Alfvén Eigenmode (BAE) etc

Youwen Sun Tokamak equilibrium 38/44


https://wulixb.iphy.ac.cn//article/id/f1187aee-b926-461a-b049-ea13e28bbe67
https://wulixb.iphy.ac.cn//article/id/f1187aee-b926-461a-b049-ea13e28bbe67

@ Appendix: Curvilinear coordinates
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Curvilinear coordinates @

@ The Jacobian for coordinate transfrom from Cartesian coordinates (x,y,z) to a
curvilinear coordinates («, 3, y) is defined as
A(x,y,2)

= —_— . = . -1
J= a.b.y) [(Va x Vp) - Vy] (51)

The differential volume can be written as dV = dxdydz = JdadBdy.
@ Contravariant base vectors
(e, e, e") = (Va, VB, Vy), (52)
and covariant base vectors
(Carep, €y) = (0aX, 9pX,0,X) = T (VB x Vy, Vy x Va, Va x V). (53)
lthas ' - e; = 5;, and e, X eg = Je”.
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Geometric meaning of the Curvilinear coordinates

@ (a = const,B = const,’y = const) are the
coordinate surfaces.

@ (a,B,v) are the coordinate lines.

@ The contravariant coordinates
(e?, e, e) = (Va, VB, Vy) are normal to
the coordinate surfaces

@ The covariant coordinates (e,, g, e,) are
tangential to the coordinate lines.

1.29 Geometric meaning of the Curvi-

linear coordinates
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@ The metrics of the coordinates are defined as: g% = ¢® - ¢f and g, = €. - ¢5.

@ lthas g;¢’* = 6x (two j means summary over all the coordinates, this will also be used as

default in the following) and ¢; = g;e'.
@ The relationship between the metrics and the Jacobian can be written as

det(g"y = 1/J* and det(gy) = J° (54)

@ The covariant of the metrics can be calculated from the contravariant of the metrics with
8w = J1&%¢7 (&) (55a)
gp = T8 - g"g"] (55b)
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Metrics evaluation for flux coordinates @

All the metrics g* (contra-variants), g.s (co-variants) can be written as a combination of

g, gpf)’ gea‘
The basic metrics g7, g’ and g% can be calculated from the following equations
2
R
gr = (—) [(B6R) + (342)*] (56)
J
R 2
¢ = - (?f) [0,RO6R + 0,Z05Z] (57)
g = & +RIT g (58)
The covariants of the metric can be transformed form the contravariant ones by using their
definitions.
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Other useful formulas @

@ Some other useful identities about operators:

VXVf = 0 (59a)

V- (VfxVg) = 0 (59b)
V-AxB) = B-VXA-A-VxB (59¢)
VxAxB) = [V-B+B-VIA-[V-A+A-V]B (59d)
Ax(VxB) = (VB)-A-@A -V)B (59e)
VA-B) = Ax(VxB)+Bx(VxA) (59f)
+A-V)B+(B-V)A (599)

VA = V(V-A)-Vx(VxA) (59h)
V-AB) = (V-AB+A -V)B (59i)
V-Adv = SEK -ds (59j)
Sﬂvm.dz - 562(-:17 (59K)
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